
I've been told that DASADA is a town in the home state of Mahatma
Gandhi. This seems a fitting name for the program, since today's
military missions that include both peacekeeping and war fighting.

Despite the euphonic name, the words in the program title actually do
describe what we're trying to do:

Dynamic Assembly means that we can change system components,
connections, or topology at run-time.

Adaptability includes both "semantic interoperability" -- making sure
we're using the same names for the same things -- and predictability -
making sure components work correctly when we put them together.

Dependability and Assurance are things the commercial market pays less
attention to than what DoD needs for its systems.

To get the systems we need, we need gauges to measure what the system
is doing.

Note that the industrial revolution was enabled by improvements in
measurement -- we had punch presses and lathes beforehand, but it was
measurement that enabled interchangeable parts and assembly lines. We
need similar ways of measuring software products for composability.

We need to be able to use these measures to guide system evolution by
updating our understanding of what the system is doing in comparison
with what we think it should or should not be doing.

As systems get more complex, they become harder to understand. System
integration problems with the Navy's Cooperative Engagement Capability
software are going to take several hundred million dollars to fix.

It should be obvious that if we can't measure what's going on in a
system, We can't model it, We can't understand it; We can't Predict it;
We can't Control it; And We can't Automatically adapt it to meet new
situations.

From a technical point of view, typical reasons why components don't
work together include:

* Interfaces don't pass the right information, (and)

* Modules make assumptions, but don't tell the rest of the system,
(and)

* Timing constraints are not stated.

DASADA is critical to future DoD and commercial systems. Systems (of
systems) are getting more difficult to understand, build, operate, and
evolve. We have fewer trained people who can understand, build,
operate, and evolve them.

Currently, industry has little incentive to fix these problems. Major
vendors support interoperability, as long as it's with their own
products. They build their market through product differentiation, not
integration.



DASADA's architecture-based approach to predictable, dynamic, component
composition should provide solutions. It will help us gauge important
software properties, so we can get software components to work together
predictably.

The architecture-based approach will help us reduce cycle time by
helping us:

* Dynamically assemble, reconfigure, and evolve systems.

* Easily introduce new components to add functionality.

* Adaptively and dynamically scale systems, and,

* Continuously upgrade components

We've got a very short video showing how an architecture representation
can ensure that design constraints are upheld - in this case,
guaranteeing that two processors process the same message.

(Aegis Video)

Architectures model component interaction to guide system
transformations. These transformations can include adding, deleting, or
replacing either a component or connection.

For example, suppose we need to add secure communications to a system.
The system could accesses dependency models to determine what type of
modifications are needed and how to carry them out.

The architectural model could help:

* Identify modules that need to be changed to incorporate cryptography
software.

* Dynamically model the interaction of cryptography components with the
timing of the underlying applications to ensure performance and freedom
from deadlock. And,

* Compose the needed communications infrastructure.

The questions DASADA is trying to answer are "Which transformations are
correct with respect to system requirements and constraints?"

"Which transformations are "best" with respect to ensuring critical
properties?"

Architecture notations model configurations, components, connectors,
events, and constraints.

Configuration gauges measure component interactions with respect to
properties such as quality of service and liveness. Do components
communicate? And, How often?



Component gauges assess whether components are compatible with respect
to the functions they perform and the data they consume and produce.

They assess whether all or part of the component's functionality is
being used, helping to identify dead code.

Connector Gauges evaluate the dynamic behavior of connections and
determine if a replacement connector is compatible with the existing
infrastructure.

Event Gauges evaluate component interaction protocols and usage
patterns. Deadlock situations occur because of component
misunderstandings about who is supposed to initiate or terminate
operations - event gauges should detect this.

DASADA is developing gauges to measure important software properties to
ensure that software components work together. It's looking at how to
gauge interoperability throughout the evolution cycle, addressing
challenges involved in 3 stages:

Continual Design gauges assess component and connector suitability
before assembly, allowing automated assembly and on-the-fly
transformations that produce predictable, safe systems.

Continual Coordination gauges assess component suitability during
assembly, allowing reconfigurations to be conducted safely across
heterogeneous, distributed dynamic systems. Continual coordination
emphasizes the sequence in which changes are made - remembering, for
example, to back up persistent data before deleting a node.

Continual Validation gauges assess suitability after assembly,
providing continual, run-time validation of critical system properties.

The following slides demonstrate a few of these gauges and the
infrastructure that's being developed to support their use.

These gauges verify that system architecture meets design and component
resource requirements.

In this example, we refine a system specification by selecting an
operating system. (text segment switch)

Linux in this example.

This choice may place constraints on the behavior of the system in
terms of power and cost.

This may, in turn, affect our freedom of choice with respect to
processors or routers.

The technical basis of these gauges are constraints specified in the
system architecture.

It's important to measure the actual run-time configuration and
interaction of components in dynamic systems, since these can't always
be predicted in advance.



We need to measure the time-varying connectivity of components so we
can see what components are actually being used and so we can improve
linkages where needed.

We also need to measure other aspects of component interaction -- when
components communicate, which operations are invoked, how much data is
exchanged, how long responses take, and what exceptions occur and under
what circumstances.

As you can see at the lower right, this can help us find dead code.

The "Evolution and Integration Command Center", will integrate and
analyze gauge readings to ensure that components behave as expected
during dynamic system evolution, integration, and re-configuration.

It is based on an XML-based event description.

It uses architectural models to automate the insertion of probes and
the generation of gauges to guarantee specified properties. It enables
"go/no-go" decisions about re-configuration alternatives and monitors
the "live" evolution of the system.

Previous slides have provided examples of the technical developments
we're expecting from DASADA. We've completed selection for technology
development efforts, which are now underway.

A planned second phase of the program involves larger experiments, to
be conducted in collaboration with DoD Systems offices.

It is anticipated that funding will be available in FY2001 and FY2002
for these organizations, and their contractors, to begin planning for
experimental demonstrations in FY02 and FY03. These planning funds are
intended to partially support efforts to:

* First, identify systems/subsystems on which experiments will be
conducted.

* Second, evaluate technologies and combinations of technologies to be
used in the experiments.

* Third, define evaluation criteria and measures and available baseline
data. And,

* Fourth, plan experiments.

We plan to conduct two to three experiments, which will be funded at a
level sufficient to provide meaningful results to potential DoD
customers for transition planning.

We thought we'd show you some of the technology developed in a
precursor program - the Evolutionary Design of Complex Systems or EDCS.

First is the use of architecture models to reduce integration
time/cost. This is illustrated by a dramatic reduction in the time
required to set up tests at the Arnold Engineering Development Center.

(ITIS Video)



Second is using semi-formal architecture description languages to
guarantee critical system properties - in this case some tools that are
tailored for control systems design and analysis.

(Honeywell Video)

Third is an animation explaining where we're going in testing and
assurance. We could show an actual video, but demonstrations that show
nothing going wrong, because you've fixed all the problems, tend to be
REALLY dull. This segment portrays three testing scenarios:

* First, The recent past, using a single holey net at the end of
development.

* Second, Current advanced practice, using multiple techniques
throughout the life cycle. And,

* Third, Current research approaches that combine testing and analysis
with fault tolerance.

(Bugs Video)

DASADA is using architectural notations and gauges:

* To -- Support run-time dynamism (modification.)

* To -- Model dynamic systems.

* To -- Monitor constraint satisfaction, both during design refinement
and during operation.

* To -- Integrate multiple views of evolving designs with system
management functions. This will provide adaptive management and self-
correction.

* And, finally, to demonstrate architecture- and model-based tools that
assure component interoperability in dynamic systems.

We invite your involvement in this program. Please visit our web site.

We look forward to talking with you.

Thank you for your attention!

 


